JOURNAIL OF COMPUTATIONAL PHYSICS 121, 190191 (1995)

LETTER TO THE EDITOR

Comments on the Fractional Step Method

One of the more subtie, but profound advances in the under-
standing of fractional step methods for the incompressible Na-
vier--Stokes equations has been the realization that these meth-
ads should be amalyzed Trom a discrete point of view |1, 21,
Liven though a fractional stepmethod is fundamentally & method
for advancing the solution in time, the analysis of such methods
cannot be divorced from the spatial discretization of the various
spatial operators. This imiportant point clears up two of the
most vexing questions accompanying traditional fractional step
methods. Namely. what form should the boundary conditions
of the intermediale velocity and pressure take and how can the
time accuracy of fractional step methads be tmproved. Since
this very fundamental point has been misunderstood and mis-
represented in recent literature, it is reviewed below. In particu-
lar. a reply to the comments of Abdallzh |3} is presented.

The fully discretized incompressible Navier—Stokes equa-
tions take the form
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Where G is the discrete gradient operator, P is the discrele
divergence operator, and A containg contributions from the time
derivative and convection and diffusion operators il they are
computad implicitly. The veetor r containg forcing lers phus
any explicit convection and diffusion, Inhomogencous hound-
ary conditions appear in e vector be, Note that the operators
A. G, and D also incorporate boundary condition information.
. The vectors v™*! and p"*! represent the unknown velocities and
pressures, respectively.
The block marix form of the evolntion equation (1) can
formally be factored as
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which ceduces sull {urther to the {ollowing set ol aperations:
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This is somctimes referred to as the Uzawa method [4]. The
variable 0¥ is known in the Berature as the imtermediate veloe-
ity. Note that the Uzawa method is extremely expensive compu-
tationally since the matrix A must effectively be inverted for
every iteration of the discrete Poisson equation (3b). Traditional
fractional step methods approximate equation (3) and signifi-
cantly reduce the computational complexity by assuming that
A™' = At

At this point a number of important statements can be made.
First, boundary conditions on the intermediate velocity are not
required. The intermediate velocity is simply a mathematical
construction wsed to go from Eq. (2) to Eq. (3). It is only
defined at points where the velocity is unknown. This seems
trivial from the previous analysis, bul it has in the past been
the pic of widespread debate. The confusion results from the
traditional approach of posing Eq. (3) with continuous (undis-
crelized) spatial operators. Second, the accuracy of the tradi-
tional fractional step method is first order in Lime no matter how
the actual diffusive and convective terms are approximated.
The first-order accuracy results from the approximation for
AL

With this background, it is now possible to address the com-
ments of Abdallah [3] in some detail. It was demonstrated by
Perot [ 2] that the (raditional fractional step method is equivalent
to the approximation A~' = Agl. This approximation and its
resulting error, were not “fassumed™ in Rel., [2], nor were
they ‘‘considercd acceplable” or “‘rationalized’”. In fact higher
order approximations for A~' were both proposed and demon-
strated to be effective. The work of Dukowicz and Dvinsky
[ 1] presents an alternative {possibly prefcrable) route to higher
order accuracy.

[n addition, the work of Perat [2] does not suggest the bound-
ary condition dp/an = 0. Although in a brief aside it does
mention that this boundary condition, when applied to (he tradi-
tional {continuous) fractional step method, will give a system
idetical to Eq. (3) once it is spatially discretized. In fact, the
conclusion found in Perot 12] is that **boundary conditions on
v* and p**'are not required”’ (see also Zang, Street, and Koself
[5]3. The fact that boundary conditions on the pressure arc not
required (when the pressure variables are located interior to
the domain, such as at cell centers) is not a result of the fractional
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siep approximation (A™' = A, but is also true of the original
discrete system, Eg. (1).

Abdallah [3] suggests that Eq. (3b) “*can be easily solved
for the pressure if A™' and G commute.”” Unfortunately, A™
{or its approximation) and ¢ do not in general commute. G is
typically not even square, so it could not possibly commute
(even with the identity matrix). Thergfore, it is most emphati-
cally rot possible to create a variable ¢ = A™'p** ' and eliminate
the matrix A™' as is suggested in the latter part of Ref. [3].
Contrary to the assertion that **Perot’s approximations (2) and
(3) satisfy and require (commutivity),”” Perot [2] actually as-
serts the very opposite (Section 6), and goes on to state that in
general it is not even possible to define a matrix Q such that
A™'G = GQ, which is the more general concept of commautivity
that should be used when presenting this (erroneous) argument.

It is well known that fractional step methods exhibit a layer
of reduced accuracy near boundaries [6]. The conclusion has
always been that this layer is a result of the boundary conditions
on v* and p"' (hence Abdallah’s interest in Perot’s pressure
boundary conditions, or more accurately, the lack of one). How-
ever, the analysis of Perot [2] suggests that the problem is
really due to a lack of generalized commutivity of the discrete
operators (A"'G # GQ}. Not surprisingly the lack of commuti-
vity in these operators happens to be at the boundaries {the
only exception to this rule known to the author is periodic
boundaries). This does not mean that the classic approach of
creating “‘higher order boundary conditions’ cannot lead to
improved accuracy by somehow canceling the effects of the
lack of commutivity. But this classic approach does seem a
rather complicated (and very difficult to analyze) solution to
the problem. A much more straightforward solution, propesed
in Perot {21, is to simply use better approximations for A”! and
to perform the fractional step splitting gfter the system has
been fully discretized so that no boundary conditions on the
intermediate variables are required.

The errors found in Ref. [3] stem from a single basic miscon-
ception, one that readers would be wise to avoid in their own
work. Discrete systems (the things we actually solve numeri-
cally) do not retain ali the properties of their continuous counter-
parts. One should be very careful when analyzing numerical
systems based solely on an understanding of the continuous
physical operators. For example, while the continuous operators
in this problem (the gradient and, typically, the Laplacian)
do commute, their discrete counterparts may not. While the
continuous version of Eq. (3) (the version found in almost all
references to the fractional step method) requires boundary
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conditions on both the pressure and the intermediate velocity,
the discrete version requires neither.

The concept of analyzing the discrete system rather than its
continuous counterpart applies in time as well as space. The
computed pressure can only really be understood in a discrete
context. Previous calculations have shown that the numerical
pressure is always first-order accurate in time (no matter what
method is used to advance the solution), and that this first-order
accuracy does not influence the temporal order of accuracy of
the velocity field. To understand this phenomenon, note that
the discrete system of equations is equivalent to the continuous
equations integrated over the time interval # to n + |. The
pressure variable that is computed (usually some combination
of p™' and p”) is therefore actually the average pressure over
the interval. By the mean value theorem this average pressure
equals the real pressure at some point in the interval, but in
general this point is unknown. The best that can be said is that
the average pressure equals the pressure at time # + #to order
Ar/2, and hence is first-order accurate. This first-order accuracy
does not effect the velocity, because the average pressure (not
the pressure at time n + £ is the gquantity required by the
discrete system for the update of the velocity.

The fractional step method is a powerful tool for the efficient
solution of the incompressible Navier--Stokes equations. How-
ever, the simplicity of the fracticnal step method can be decep-
tive, In the context of the analysis of such methods it is ex-
tremely important to consider the fully discrete system of
equations and not be mislead by the properties of its continu-
ous counterpart,
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